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1 Introduction

The Matrix Equivalence Digital Signature (MEDS) scheme is a digital signature scheme based
on the difficulty of finding an isometry between two equivalent matrix rank-metric codes. From
the rank-equivalence problem, we obtain a zero-knowledge identification scheme using multi-
ple rounds of a Sigma protocol. The signature scheme is then obtained via the Fiat-Shamir
transform. As described in this document, various optimizations are incorporated into the
scheme, which allows for multiple tradeoffs. This scheme has been introduced in the publica-
tion [CNP+23]:

Tung Chou, Ruben Niederhagen, Edoardo Persichetti, Tovohery Hajatiana Randri-
anarisoa, Krijn Reijnders, Simona Samardjiska, and Monika Trimoska: “Take your
MEDS: Digital Signatures from Matrix Code Equivalence”. Progress in Cryptology
— AfricaCrypt 2023. Lecture Notes in Computer Science, Springer, 2023.

2 Tools

In this section we introduce the basic tools that we need to describe MEDS. More detailed
mathematical background will be introduced in the rest of the document.

2.1 Notation and Main Definitions

Notation and parameters of the MEDS scheme are shown in Table 1.

Matrices. We denote matrices with bold capital letters, e.g., M,A, and B.

Submatrices. We denote submatrices with square brackets, e.g., M[a, b; c, d] denotes the
submatrix of the intersection of rows a to b and columns c to d of matrix M. If no row
(column) range is provided, all rows (columns) are included. The element in row i and column
j of a matrix M is denoted as M[i; j].

Matrix RankMetric Code. An [m×n, k] matrix rank metric code over Fq is a k-dimensional
subspace of Fm×n

q .

Isometry. An isometry on Fm×n
q is an Fq-linear map ϕ defined by two matrices A ∈ GLm(q)

and B ∈ GLn(q) such that ϕ(M) = AMB for all M ∈ Fm×n
q .1

Matrix Code Equivalence Problem. The MCE Problem asks whether there exists an
isometry between two matrix rank metric codes. Its computational form is written as follows.

• Input: Two [m× n, k] rank metric codes C and D.

• Problem: Find (if any) an isometry ϕ on Fm×n
q such that C = ϕ(D).

2.2 Signatures from Matrix Equivalence

Our scheme is based on a three-pass Sigma protocol, which we present in Figure 1.

1This definition of isometries restricts to maps on the whole matrix space, i.e. ϕ : Fm×n
q → Fm×n

q , compared
to the usual definition of an isometry specifically between two [m×n, k] matrix rank codes C, D, i.e. ϕ : C → D.
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Scheme Parameters:
q Size of the base field, a prime.
m,n Codeword sizes, two integers.
k Code dimension, an integer.
λ Security parameter, an integer.

Protocol Objects:
Fq Finite fields with q elements.

GLn(q) Group of invertible matrices of size n and elements in Fq.

G0,G1 Public matrices in Fk×mn
q .

A ∈ GLm(q),B ∈ GLn(q) Secret invertible matrices.

Ã ∈ GLm(q), B̃ ∈ GLn(q) Ephemeral invertible matrices.
H Hash function, with domain/range as specified.
SF(A) Reduced-row echelon form of a matrix A.
A⊤ Transpose of a matrix A.
A⊗B Kroenecker product between two matrices A and B.
πA,B(G) Simplified notation for the operation G(A⊤ ⊗B).
Id Identity matrix of size d.
Ud Upper shift matrix of size d (identity shifted by one column to the right).
0d1×d2 Zero matrix of size d1 × d2.
cmt Commitment, a hash digest.
ch Challenge, a bit.
rsp Response, a tuple in GLm(q)×GLn(q).

Table 1: Notation and parameters of the MEDS scheme.

Public Data
q,m, n, k, λ ∈ N.
H : {0, 1}∗ → {0, 1}2λ.

II. Commit(pk)

1. Ã, B̃
$←−− GLm(q)×GLn(q).

2. Compute G̃ = SF(πÃ,B̃(G0)).

3. Compute h = H(G̃).

4. Set cmt = h.

5. Send cmt to verifier.

IV. Response(sk, pk, cmt, ch)
1. If ch = 0 set (µ, ν) = (Ã, B̃).

2. If ch = 1 set (µ, ν) = (ÃA−1,B−1B̃).

3. Set rsp = (µ, ν).

4. Send rsp to verifier.

I. Keygen()

1. G0
$←−− Fk×mn

q .

2. A,B
$←−− GLm(q)×GLn(q).

3. Compute G1 = SF(πA,B(G0)).

4. Set sk = (A,B) and pk = (G0,G1).

III. Challenge()

1. c
$←−− {0, 1}.

2. Set ch = c.

3. Send ch to prover.

V. Verify(pk, cmt, ch, rsp)
1. If ch = 0 compute

h′ = H(SF(πµ,ν(G0))).

2. If ch = 1 compute
h′ = H(SF(πµ,ν(G1))).

3. Accept if h′ = cmt or reject otherwise.

Figure 1: MEDS Sigma Protocol
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3 Protocol Description (2.B.1)

3.1 Design Rationale

What is the Security of MEDS? The mathematical problem behind MEDS is the Matrix
Code Equivalence (MCE) problem. This problem is considered to be hard after extensive study,
and the best algorithm to solve it is exponential, when the parameters are carefully chosen.
Such hardness is at the basis of the security of the zero-knowledge scheme and when applying
the Fiat-Shamir transform [FS87], we obtain Existential Unforgeability against Chosen Message
Attacks (EUF-CMA). The transformation operates in the Random Oracle Model (ROM), and
plausibly provides security in the Quantum Random Oracle Model (QROM) as well, as argued
for instance in [DFMS19, LZ19]. The security of the MCE Problem is discussed in Section 4.

What is the Matrix Code Equivalence Problem? The MCE problem is exactly the
vectorization problem for the group action of isometries on matrix rank-metric codes. For a
matrix M ∈ Fm×n

q , one can concatenate its rows to obtain a vector in Fmn
q . This gives an

isomorphism between Fm×n
q and Fmn

q and it allows to represent a matrix rank metric code
C as a k-dimensional subspace of Fmn

q . In this setting, the isomorphism of Fm×n
q defined by

A ∈ GLm(q) and B ∈ GLn(q) can be expressed by a multiplication on the right by the
Kroenecker product A⊤ ⊗ B. If, in addition, we represent the two codes C and D by their
generator matrices G1 and G2, in standard form, then an isometry ϕ such that ϕ(C) = D
can be expressed by a mapping between the generator matrices where G1 7→ TG1(A

⊤ ⊗ B)
for some matrix T ∈ GLk(q). This representation allows an explicit formulation of the MCE
problem given in Section 2.1.

3.2 Protocol Steps

Iterating. The identification protocol in Figure 1 only provides soundness 1/2, meaning that
a malicious party can successfully impersonate an honest prover half of the times. To achieve
the authentication level required, then, it is necessary to iterate the protocol t times, where
in the simplest case t = λ. By “iterate” here we intend repeating the Commit, Challenge and
Response phases independently; the verifier will verify each response separately and only accept
if verification is passed in all iterations.

Fiat-Shamir. The Fiat-Shamir transformation [FS87] is applied to the iterated protocol in
order to obtain a signature scheme. Informally, this transformation replaces the role of the
verifier in the challenge step by producing the string of challenges via a collision-resistant hash
function, which is computed on the message to be signed, together with the commitments for
each round; in doing so, it turns the protocol from interactive to non-interactive. Note that,
if the scheme is designed to be commitment-recoverable (as is the case for MEDS), it is not
necessary to transmit the commitments as part of the signature; this can instead include the
hash digest, which can then be used to verify correctness of the signatures once commitments
are, as the name says, recovered on the verifier side.

Multiple Public Keys. It is possible to greatly reduce the soundness error by expanding the
public key [DG19]. In our case, this means including multiple generator matrices of the form
Gi = SF(G0(A

⊤
i ⊗Bi)), corresponding to as many secret matrix pairs (Ai,Bi), for 1 ≤ i ≤ s.

The value s, an integer, becomes then a system parameter. The verifier’s challenge then asks
to provide an isometry starting from a specific key Gi. Since the challenge space is larger,
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fewer rounds are necessary to achieve the same authentication level, which allows to reduce the
signature size (at the cost of increasing in the public key).

Fixed-Weight Challenge Strings. When the isometry queried is the one which comes
from G0, the response consists of matrices Ã, B̃, which are generated uniformly at random;
it is then sufficient to transmit only the seed used to generate them. In other words, the
challenge corresponding to 0 is much “lighter” than the others, and so the communication cost
can be improved by adjusting the probability distribution of the challenge string, to make this
possibility more likely to happen [BKP20a]. This means that individual rounds require less
communication on average (at the cost of increasing the number of rounds).

Seed Tree. To efficiently represent the t seeds used in the signing and verification algorithms
of MEDS, we use a binary “seed tree” [BKP20a]. To begin, the root of the tree is set by a
randomly chosen master seed. For every node, we generate its two children by feeding a PRNG
with the node value and parse the PRNG output as its two children. This procedure is iterated
for ⌈log2(t)⌉ times, so that we end up with a layer having 2⌈log2(t)⌉ ≥ t seeds. When one needs
to communicate all but a subset of the t seeds, say, for instance, all except those indexed by a
set J ⊂ {0, · · · , t−1} of size w, it is possible to exploit the tree structure to reduce the number
of bits transmitted. The idea to improve efficiency is that of sending parent nodes, whenever
possible: the verifier will repeat the procedure to generate the children nodes, and will thus
obtain the required seeds, while minimizing the amount of space required in the signature. In
the worst case, communicating the t− w seeds requires the following amount of bits:

λ
(
2⌈log2(w)⌉ + w(⌈log2(t)⌉ − ⌈log2(w)⌉ − 1)

)
.

Public Key Compression. To combat the trade-off of public key vs. signature size, we
introduced a technique for public key compression in [CNP+23] that trades public key size
for private key size inspired by the trade-off in the key generation of Rainbow [DCP+20] and
UOV [BCH+23]. Instead of generating the secret (Ai,Bi) from a secret seed and then deriving
the public Gi, we generate Gi partially from a public seed and then use it to find (Ai,Bi)
and the rest of the public key Gi. We start by performing a secret change of basis of G0

by multiplying it by a secret matrix Ti ∈ GLk(q) generated from a secret seed to obtain G′
0.

From a public seed we generate a complete m × n codeword P
(i)
0 and the top m − 1 rows of

a codeword P
(i)
1 . Using these and the codewords P

(0)
0 ,P

(0)
1 corresponding to the first two rows

from G′
0 we find Ai and Bi from the linear relations: P

(i)
0 B−1

i = AiP
(0)
0 and P

(i)
1 B−1

i = AiP
(0)
1 .

To obtain a single solution we fix one value of Ai (this is equivalent to considering the isometry
projectively). After the isometry (Ai,Bi) is found, we proceed to finding the rest of the matrices

P
(i)
j = AiP

(0)
j Bi for all j ∈ {3, . . . , k} and then construct the public Gi.

This step during key generation reduces the space required for the public matrices by
2s(mn − k) and can also lead to reduction of the signature size by appropriate balancing.
On the other hand it introduces computational overhead. We take care of this by introducing
an optimization – instead of generating P

(i)
0 and P

(i)
1 randomly, we take these to be the identity

matrix, and the identity shifted by one position to the right, respectively, which makes the
resulting system sparse and structured (see Section 5.2, paragraph “System solving”, for some
implementation notes).
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3.3 Supporting Functions

In the description of the MEDS signature scheme, we use the following definitions and subrou-
tines:

B denotes one byte, i.e., B = {0, . . . , 255}.

Fq : Z 7→ Fq maps an integer a with 0 ≤ a < q to the corresponding field element.

Z : Fq 7→ Z maps a field element to the corresponding integer.

BitLen : Z 7→ Z returns the number of bits required to store an integer value, i.e. BitLen(i) =
⌈log2(i)⌉.

ByteLen : Z 7→ Z returns the number of bytes required to store a integer value, i.e., ByteLen(i) =
⌈log2(i)/8⌉.

Randombytes : Z 7→ B∗ takes an integer l as input and returns l random bytes b0, . . . , bl−1 ∈ B.

XOF : B∗ × Z× · · · × Z 7→ B∗ × · · · × B∗ is an extendable output function that takes a seed
and a sequence of length values as inputs and produces a sequence of pseudo-random
byte vectors of lengths according to the input length sequence: XOF(σ, ℓ0, . . . , ℓi) 7→
Bℓ0 × · · · × Bℓi . The call XOF(σ, ∗) produces a byte stream.

RowsToMatrices : Fk×mn
q 7→ {Fm×n

q }k takes a matrix M ∈ Fk×mn
q as input, maps each row i ∈

{0, . . . , k − 1} of M to a matrix Pi ∈ Fm×n
q such that Pi[⌊j/n⌋; j mod n] = M[i, j] for

j ∈ {0, . . . ,mn− 1}, and returns k matrices P0, . . . ,Pk−1 ∈ Fm×n
q .

MatricesToRows : {Fm×n
q }k 7→ Fk×mn

q takes k matrices P0, . . . ,Pk−1 as input, generates a matrix
M ∈ Fk×mn

q by mapping Pi, i ∈ {0, . . . , k − 1}, to row i of M such that M[i, j] =
Pi[⌊j/n⌋; j mod n] for j ∈ {0, . . . ,mn− 1}, and returns M ∈ Fk×mn

q .

SF : Fa×b
q 7→ Fa×b

q ∪ {⊥}; a, b ∈ Z returns the systematic form of a matrix M ∈ Fa×b
q or ⊥ if the

systematic form does not exist.

Solve : Fk×mn
q × Fq 7→ (Fm×m

q ∪ {⊥})× (Fn×n
q ∪ {⊥})} takes G′

0 ∈ Fk×mn
q and am−1,m−1 ∈ Fq

as input and sets P
(0)
0 ,P

(0)
1 , . . . ∈ Fm×n

q = RowsToMatrices(G′
0). Consider the following

equations with A and B unknown:

P0B
−1 = AP

(0)
0 (1a)

P1B
−1 = AP

(0)
1 , (1b)

which gives 2mn equations in m2 +n2 variables over Fq. To derive A and B, Solve solves
the system consisting of of the first 2mn − 1 equations (for m = n, i.e., without the
equation for index [m− 1, n− 1] in (1b)) with P0 = Im and P1 = Um for A ∈ Fm×m

q and
B−1 ∈ Fn×n

q with A[m − 1;m − 1] = am−1,m−1, and returns (A,B−1) if the system has
exactly one solution or (⊥,⊥) otherwise.

H : B∗ 7→ Bℓdigest hashes a byte string of arbitrary length to a byte string of length ℓdigest.

G : Bℓsalt × B2 × Bℓtree seed 7→ Bℓtree seed × Bℓtree seed takes a salt α ∈ Bℓsalt , an address a encoded into
two bytes, and a seed ρ ∈ Bℓtree seed as inputs, concatenates and hashes (α | a | ρ) to a byte
string of length 2ℓtree seed, and returns the first ℓtree seed and the second ℓtree seed bytes.
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ρ0,0

ρ1,1

ρ2,3

ρ3,7ρ3,6
G(ρ2,3)

ρ2,2

ρ3,5ρ3,4
G(ρ2,2)

G(ρ1,1) = (ρ2,2|ρ2,3)

ρ1,0

ρ2,1

ρ3,3ρ3,2
G(ρ2,1)

ρ2,0

ρ3,1ρ3,0
G(ρ2,0)

G(ρ1,0) = (ρ2,0|ρ2,1)

G(ρ0,0) = (ρ1,0|ρ1,1)

Figure 2: Seed tree example for t = 5 and w = 1 SeedTree computes the tree structure from root
node ρ0,0 and generates the seed leafs σ0 = ρ3,0 to σ4 = ρ3,4. SeedTreeToPath returns the seed-tree
path (marked green) for h3 > 0 and hi = 0, i ̸= 3. PathToSeedTree recovers the leaf nodes ρ3,0, ρ3,1,
ρ3,2, and ρ3,4 form the seed-tree path without learning nodes ρ0,0, ρ1,0, ρ2,1, and ρ3,3 (marked red).

SeedTreet : Bℓtree seed × Bℓsalt 7→ (Bℓtree seed)t takes a root seed ρ0,0 ∈ Bℓtree seed and a salt α ∈ Bℓsalt as
input, computes a binary seed tree of height ⌈log2(t)⌉, and returns the first t leaf nodes
as seeds σ0, . . . , σt−1 ∈ Bℓtree seed . The seed tree is constructed recursively starting form the
root with seed ρ0,0 on level 0: The seed of length Bℓtree seed of the ith node on level j is
hashed together with the salt α and the node address ai,j as G(α, ai,j, ρi,j). The two hash
outputs ρ2i,j+1 and ρ2i+2,j+1 of G are assigned to the 2ith and (2i + 1)th nodes on level
j + 1. The node address ai,j is computed as ai,j = 2j − 1 + i and converted to two bytes
b0 = ai,j mod 256 and b1 = ⌊ai,j/8⌋ as input to G. Figure 2 shows an example for a seed
tree with t = 5.

SeedTreeToPatht : {0, . . . , s− 1}t × Bℓtree seed × Bℓsalt 7→ Bℓpath takes as input an expanded digest
h0, . . . , ht−1 ∈ {0, . . . , s− 1}, a root seed ρ ∈ Bℓtree seed , and a salt α ∈ Bℓsalt . This function
recomputes a seed tree with the same structure as SeedTreet(). It then for each i with
hi ̸= 0 removes the seed label of each ith leaf node and deletes the seed labels of all parent
nodes up to the tree root node. This function then outputs as seed-tree path sequentially
in depth-first order all non-empty labels at the highest level padded with 0-bytes up to
length ℓpath.

PathToSeedTreet : {0, . . . , s− 1}t × Bℓpath × Bℓsalt 7→ Bℓtree seed×t takes as input an expanded di-
gest h0, . . . , ht−1 ∈ {0, . . . , s − 1}, a seed-tree path p ∈ Bℓpath , and a salt α ∈ Bℓsalt . This
function recomputes an empty seed tree (nodes without labels) with the same structure
as SeedTreet(). It then applies the seed-tree path p ∈ Bℓpath by labeling the corresponding
nodes. It then re-computes the missing higher-level node labels up to the leaf nodes. This
function then outputs the labels of the leaf nodes in order (including empty labels) as a
sequence of seeds σ0, . . . , σt−1 ∈ Bℓtree seed .

3.4 MEDS Operations

The MEDS signature scheme makes use of the supporting operations Compress, Decompress,
CompressG, DecompressG, ExpandFqs, ExpandSystMat, π, ExpandInvMat, and ParseHashs,t,w as
defined in Algorithms 1 to 9.

The main operations KeyGen, Sign, and Verify of the MEDS signature scheme are defined
in Algorithms 10 to 12.
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Algorithm 1: Compress : F∗,∗
q 7→ B∗ — compress matrix

Input: matrix M ∈ Fm′×n′
q

Output: byte string b0, . . . , bℓb−1 ∈ B with ℓb = ⌈m′n′ · BitLen(q)/8⌉
1 forall i ∈ {0, . . . , ℓb − 1} do
2 bi ∈ B ← 0

3 fbyte ∈ Z← 0
4 fbit ∈ Z← 0

5 forall i ∈ {0, . . . ,m′ − 1} do
6 forall j ∈ {0, . . . , n′ − 1} do
7 c ∈ Z← 0
8 v ∈ Z← Z(M[i; j])
9 while c < BitLen(q) do

10 c′ ∈ Z← min(8− fbit,BitLen(q)− c)

11 bfbyte ← bfbyte + (v mod 2c
′
) · 2fbit

12 v ← ⌊v/2c′⌋
13 c← c+ c′

14 fbit ← fbit + c′

15 if fbit = 8 then
16 fbit ← 0
17 fbyte ← fbyte + 1

18 return b0, . . . , bℓb−1 ∈ B

Algorithm 2: Decompress : B∗ × Z× Z 7→ F∗,∗
q — decompress matrix

Input: byte string b0, . . . , bℓb−1 ∈ B with ℓb = ⌈m′n′ · BitLen(q)/8⌉, m′, n′ ∈ Z+

Output: matrix M ∈ Fm′×n′
q

1 fbyte ∈ Z← 0
2 fbit ∈ Z← 0

3 forall i ∈ {0, . . . ,m′ − 1} do
4 forall j ∈ {0, . . . , n′ − 1} do
5 c← 0
6 v ← 0
7 while c < BitLen(q) do
8 c′ ← min(8− fbit,BitLen(q)− c)

9 v ← v + (⌊bfbyte/2fbit⌋ mod 2c
′
) · 2c

10 c← c+ c′

11 fbit ← fbit + c′

12 if fbit = 8 then
13 fbit ← 0
14 fbyte ← fbyte + 1

15 M[i; j]← Fq(v)

16 return M ∈ Fm′×n′
q

7



Algorithm 3: CompressG : Fk×mn
q 7→ B∗ — compress public key matrix

Input: matrix G ∈ Fk×mn
q

Output: byte string b0, . . . , bℓb−1 ∈ B with ℓb = ⌈ℓG′ · BitLen(q)/8⌉ and
ℓG′ = (k − 2)(mn− k) + n

1 G′ ∈ F1×ℓG′
q ← 01×ℓG′

2 fG′ ← 0

3 forall i ∈ {0, . . . , n− 1} do
4 G′[0; fG′ ]← G[1;mn− n+ i]
5 fG′ ← fG′ + 1

6 forall i ∈ {2, . . . , k − 1} do
7 forall j ∈ {k, . . . ,mn− 1} do
8 G′[0; fG′ ]← G[i; j]
9 fG′ ← fG′ + 1

10 return b0, . . . , bℓb−1 ∈ B = Compress(G′)

Algorithm 4: DecompressG : B∗ 7→ Fk×mn
q — decompress public key matrix

Input: byte string b ∈ Bℓb with
ℓb = ⌈ℓG′ · BitLen(q)/8⌉ and ℓG′ = (k − 2)(mn− k) + n

Output: matrix G ∈ Fk×mn
q

1 G′ ∈ F1×ℓG′
q ← Decompress(b, 1, ℓG′)

2 G ∈ Fk×mn
q ← (Ik|0k×mn−k)

3 forall i ∈ {1, . . . ,m− 1} do
4 G[0; in]← 1
5 G[1; in+ 1]← 1

6 fG′ ← 0

7 forall i ∈ {0, . . . , n− 1} do
8 G[1;mn− n+ i]← G′[0; fG′ ]
9 fG′ ← fG′ + 1

10 forall i ∈ {2, . . . , k − 1} do
11 forall j ∈ {k, . . . ,mn− 1} do
12 G[i; j]← G′[0; fG′ ]
13 fG′ ← fG′ + 1

14 return G ∈ Fk×mn
q
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Algorithm 5: ExpandFqs : B∗,Z 7→ F∗
q — generate field elements from seed

Input: seed σ ∈ Bℓσ of length ℓσ,
integer ℓ ∈ Z

Output: sequence of ℓ field elements a0, a1, . . . , aℓ−1 ∈ Fq

1 b0, b1, · · · ∈ B ← XOF(σ, ∗)
2 f ∈ Z← 0
3 forall i ∈ {0, . . . , ℓ− 1} do
4 ai ∈ Z← 0
5 forall j ∈ {0, . . . ,ByteLen(q)− 1} do
6 ai ← ai + bf · 28j
7 f ← f + 1

8 ai ← ai mod 2BitLen(q)

9 if ai ≥ q then
10 goto line 4

11 return Fq(a0),Fq(a1), . . . ,Fq(aℓ−1) ∈ Fq

Algorithm 6: ExpandSystMat : B∗ 7→ Fk×mn
q — generate systematic matrix from seed

Input: seed σ ∈ Bℓσ of length ℓσ
Output: matrix M ∈ Fk×mn

q in systematic form

1 a0, a1, . . . , ak(mn−k)−1 ∈ Fq ← ExpandFqs(σ, k(mn− k)

2 fa ∈ Z← 0

3 M ∈ Fk×mn
q ← 0k×mn

4 forall i ∈ {0, . . . , k − 1} do
5 M[i; i] ∈ Fq ← 1

6 forall j ∈ {k, . . . ,mn− 1} do
7 M[i; j] ∈ Fq ← afa
8 fa ← fa + 1

9 return M ∈ Fk×mn
q

Algorithm 7: πFm×m
q ,Fn×n

q
: Fk×mn

q 7→ Fk×mn
q

Input: matrices A ∈ Fm×m
q ,G ∈ Fk×mn

q ,B ∈ Fn×n
q (notation: πA,B(G))

Output: matrix G′ ∈ Fk×mn
q

1 P0, . . . ,Pk−1 ∈ Fm×n
q ← RowsToMatrices(G)

2 for i ∈ {0, . . . , k − 1} do
3 P′

i ∈ Fm×n
q ← APiB

4 G′ ∈ Fk×mn
q ← MatricesToRows(P′

0, . . . ,P
′
k−1)

5 return G′ ∈ Fk×mn
q
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Algorithm 8: ExpandInvMat : B∗,Z 7→ F∗,∗
q — generate invertible matrix from seed

Input: seed σ ∈ Bℓσ of length ℓσ, matrix dimension d ∈ Z
Output: invertible matrix M ∈ GLd(q)

1 a0, a1, · · · ∈ Fq ← ExpandFqs(σ, ∗)
2 fa ∈ Z← 0

3 forall i ∈ {0, . . . , d− 1} do
4 forall j ∈ {0, . . . , d− 1} do
5 M[i; j] ∈ Fq ← afa
6 fa ← fa + 1

7 if M /∈ GLd(q) then
8 goto line 3
9 return M ∈ GLd(q)

Algorithm 9: ParseHashs,t,w : Bℓdigest 7→ {0, . . . , s − 1}t — parse hash to weight-w
vector

Input: digest d ∈ Bℓdigest as byte string,
parameters s ∈ {2, . . . , 256}, t, w ∈ Z+, w ≪ t

Output: h0, . . . , ht−1 ∈ {0, . . . , s− 1} such that w elements are non-zero

1 b0, b1, · · · ∈ B∗ ← XOF(d, ∗)
2 fb ← 0

3 forall i ∈ {0, . . . , t− 1} do
4 hi ← 0

5 forall i ∈ {0, . . . , w − 1} do
6 fh ← 0
7 forall j ∈ {0, . . . ,ByteLen(t)− 1} do
8 fh ← fh + (bfb2

8j)
9 fb ← fb + 1

10 fh ← fh mod 2BitLen(t)

11 if fh ≥ t or hfh > 0 then
12 goto line 6

13 hfh ← bfb
14 fb ← fb + 1

15 hfh ← hfh mod 2BitLen(s)

16 if hfh = 0 or hfh ≥ s then
17 goto line 13

18 return h0, . . . , ht−1 ∈ {0, . . . , s− 1}
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Algorithm 10: MEDS.KeyGen(): key generation

Input: —
Output: public key pk ∈ Bℓpk , secret key sk ∈ Bℓsk

1 δ ∈ Bℓsec seed ← Randombytes(ℓsec seed)

2 σG0 ∈ Bℓpub seed , σ ∈ Bℓsec seed ← XOF(δ, ℓpub seed, ℓsec seed)

3 G0 ∈ Fk×mn
q ← ExpandSystMat(σG0)

4 forall i ∈ {1, . . . , s− 1} do
5 σa, σTi

, σ ∈ Bℓsec seed ← XOF(σ, ℓsec seed, ℓsec seed, ℓsec seed)

6 Ti,∈ GLk(q)← ExpandInvMat(σTi
, k)

7 am−1,m−1 ∈ Fq ← ExpandFqs(σa, 1)

8 G′
0 ∈ Fk×mn

q ← TiG0

9 Ǎi ∈ Fm×m
q ∪ {⊥}, B̌i ∈ Fn×n

q ∪ {⊥} ← Solve(G′
0, am−1,m−1)

10 if (Ǎi = ⊥ and B̌i = ⊥) or Ǎi /∈ GLm(q) or B̌i /∈ GLn(q) then
11 goto line 5

12 Ai,A
−1
i ∈ GLm(q)← Ǎi, Ǎ

−1
i

13 Bi,B
−1
i ∈ GLn(q)← B̌−1

i , B̌i

14 Gi ∈ Fk×mn
q ← πAi,Bi

(G0)

15 Gi ∈ Fk×mn
q ∪ {⊥} ← SF(Gi)

16 if Gi = ⊥ then
17 goto line 5

18 pk ∈ Bℓpk ← (σG0 |CompressG(G1) | . . . |CompressG(Gs−1))
19 sk ∈ Bℓsk ←

(δ |σG0 |Compress(A−1
1 ) | . . . |Compress(A−1

s−1) |Compress(B−1
1 ) | . . . |Compress(B−1

s−1))
20 return pk, sk
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Algorithm 11: MEDS.Sign(): signing

Input: secret key sk ∈ Bℓsk , message m ∈ Bℓm

Output: signed message ms ∈ Bℓsig+ℓm

1 fsk ← ℓsec seed

2 σG0 ← pk[fsk, fsk + ℓpub seed − 1]
3 fsk ← fsk + ℓpub seed

4 G0 ∈ Fk×mn
q ← ExpandSystMat(σG0)

5 forall i ∈ {1, . . . , s− 1} do
6 A−1

i ∈ Fm×m
q ← Decompress(sk[fsk, fsk + ℓFm×m

q
],m,m)

7 fsk ← fsk + ℓFm×m
q

8 forall i ∈ {1, . . . , s− 1} do
9 B−1

i ∈ Fn×n
q ← Decompress(sk[fsk, fsk + ℓFn×n

q
], n, n)

10 fsk ← fsk + ℓFn×n
q

11 δ ∈ Bℓsec seed ← Randombytes(ℓsec seed)
12 ρ ∈ Bℓtree seed , α ∈ Bℓsalt ← XOF(δ, ℓtree seed, ℓsalt)
13 σ0, . . . , σt−1 ∈ Bℓtree seed ← SeedTreet(ρ, α)

14 forall i ∈ {0, . . . , t− 1} do
15 σÃi

, σB̃i
, σi ∈ Bℓtree seed ← XOF(σi, ℓtree seed, ℓtree seed, ℓtree seed)

16 Ãi ∈ GLm(q)← ExpandInvMat(σÃi
,m)

17 B̃i ∈ GLn(q)← ExpandInvMat(σB̃i
, n)

18 G̃i ∈ Fk×mn
q ← πÃi,B̃i

(G0)

19 G̃i ∈ Fk×mn
q ∪ {⊥} ← SF(G̃i)

20 if G̃i = ⊥ then
21 goto line 15

22 d ∈ Bℓdigest ← H(Compress(G̃0[; k,mn− 1]) | . . . |Compress(G̃t−1[; k,mn− 1]) |m)
23 h0, . . . , ht−1 ∈ {0, . . . , s− 1} ← ParseHashs,t,w(d)

24 fv ← 0

25 forall i ∈ {0, . . . , t− 1} do
26 if hi > 0 then

27 µi ∈ Fm×m
q ← Ãi ·A−1

hi

28 νi ∈ Fn×n
q ← B−1

hi
· B̃i

29 vfv ∈ B
ℓFm×m

q
+ℓFn×n

q ← (Compress(µi) |Compress(νi))
30 fv ← fv + 1

31 p ∈ Bℓpath ← SeedTreeToPatht(h0, . . . , ht−1, ρ, α)

32 return ms ∈ B
w(ℓFm×m

q
+ℓFn×n

q
)+ℓpath+ℓdigest+ℓsalt+ℓm=ℓsig+ℓm

= (v0 | . . . | vw−1 | p | d |α |m)
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Algorithm 12: MEDS.Verify(): verification

Input: public key pk ∈ Bℓpk , signed message ms ∈ Bℓsig+ℓm

Output: message m ∈ Bℓ
m or ⊥

1 σG0 ← pk[0, ℓpub seed − 1]
2 G0 ∈ Fk×mn

q ← ExpandSystMat(σG0)

3 fpk ← ℓpub seed

4 forall i ∈ {1, . . . , s− 1} do
5 Gi ∈ Fk×mn

q ← DecompressG(pk[fpk, fpk + ℓGi
])

6 fpk ← fpk + ℓGi

7 p ∈ Bℓpath ← ms[ℓsig − ℓdigest − ℓsalt − ℓpath, ℓsig − ℓdigest − ℓsalt − 1]
8 d ∈ Bℓdigest , α ∈ Bℓsalt ,m ∈ B∗ ←

ms[ℓsig − ℓdigest − ℓsalt, ℓsig − ℓsalt − 1],ms[ℓsig − ℓsalt, ℓsig − 1],ms[ℓsig, ]

9 h0, . . . , ht−1 ∈ {0, . . . , s− 1} ← ParseHashs,t,w(d)

10 σ0, . . . , σt−1 ∈ Bℓtree seed ← PathToSeedTreet(h0, . . . , ht−1, p, α)

11 fms ← 0

12 forall i ∈ {0, . . . , t− 1} do
13 if hi > 0 then
14 µi ∈ Fm×m

q ← Decompress(ms[fms , fms + ℓFm×m
q
− 1],m,m)

15 νi ∈ Fn×n
q ← Decompress(ms[fms + ℓFm×m

q
, fms + ℓFm×m

q
+ ℓFn×n

q
− 1], n, n)

16 fm̂s ← fm̂s + ℓFm×m
q

+ ℓFn×n
q

;

17 Ĝi ∈ Fk×mn
q ← πµi,νi(Ghi

)

18 Ĝi ∈ Fk×mn
q ∪ {⊥} ← SF(Ĝi)

19 if Ĝi = ⊥ then
20 return ⊥
21 else
22 σÂi

, σB̂i
, σi ∈ Bℓtree seed ← XOF(σi, ℓtree seed, ℓtree seed, ℓtree seed)

23 Âi ∈ GLm(q)← ExpandInvMat(σÂi
,m)

24 B̂i ∈ GLn(q)← ExpandInvMat(σB̂i
, n)

25 Ĝi ∈ Fk×mn
q ← πÂi,B̂i

(G0)

26 Ĝi ∈ Fk×mn
q ∪ {⊥} ← SF(Ĝi)

27 if Ĝi = ⊥ then
28 goto line 22

29 d′ ∈ Bℓdigest ← H(Compress(Ĝ0[; k,mn− 1]) | . . . |Compress(Ĝt−1[; k,mn− 1]) |m)

30 if d = d′ then
31 return m
32 else
33 return ⊥
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4 Security and Known Attacks (2.B.4/2.B.5)

4.1 Hardness Assumption

The security of MEDS is based on the MCE problem, which has been studied in several
works [CDG20, RST22, CNP+23]. It is now known to be at least as hard as the Code Equiva-
lence problem in the Hamming metric [CDG20] and equivalent to the homogeneous version of
the Quadratic Maps Linear Equivalence problem (QMLE) [RST22] and the alternating trilinear
form equivalence problem [GQT22, TDJ+22]. As shown in [GQ23] these three problems are
all Tensor Isomorphism (TI)-complete. The entire TI class is believed to be hard, even for
quantum adversaries. See a summary of the known algorithms in Section 4.3.

4.2 Provable Security

If we apply only the Fiat-Shamir transform on the MEDS Sigma protocol from Figure 1, we
obtain a “non-optimized” version of MEDS. The security of the non-optimized version of MEDS
was proven in [CNP+23] in the random oracle model. A detailed statement of the security claim
is given in the following theorem:

Theorem 4.1. The non-optimized version of MEDS is EUF-CMA-secure in the random oracle
model, if the following conditions are satisfied:

• the search version of the MCE problem is intractable in the average case,

• the hash function H, is modeled as a random oracle,

• the hash function G, is modeled as a random oracle,

• the function XOF is modeled as a random oracle.

The proof follows the standard approach for showing the security of Fiat-Shamir signatures,
and is therefore omitted.

Since recently, there exist techniques for showing the security of Fiat-Shamir signatures in
the QROM [DFMS19, LZ19], under some mild assumptions. For example, [DFMS19] requires
the property of computationally unique responses as defined in [KLS18]. MEDS satisfies this
property under mild plausible assumptions. As a matter of fact, under the same assumption,
MEDS satisfies the perfect unique response property as defined by Unruh in [Unr12]. For this
we need to look at the automorphism group of a given matrix code.

An automorphism of a matrix code C is a map (A,B) : Fm×n
q → Fm×n

q so that for each
C ∈ C, we get ACB ∈ C, where A ∈ GLm(q) and B ∈ GLn(q). The automorphism group
of C contains all the automorphisms of C. If the automorphism group contains only the maps
(λI, νI) for constants λ, ν ∈ F∗

q, we say the automorphism group is trivial.
If we consider the map (A,B) : C → C projectively, a trivial automorphism group contains

only the map (I, I). This is typically the setting that we have even when looking at the MCE
problem, where one solution (A,B), naturally yields as solutions all (λA, νB) for constants
λ, ν ∈ F∗

q. Projectively, however, this is considered as a single solution.
As discussed in [RST22], experimental evidence, as well as results for other algebraic

structures, suggests that the automorphism group of a randomly chosen matrix code is trivial,
and if assumed trivial, several reductions between hard problems are very tight. Therefore, it
is natural to also make this very plausible assumption here.
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Assumption Aut: The automorphism group of a randomly chosen matrix code is trivial with
overwhelming probability for sufficiently large code length m× n.

We have thus the following based on the results from [DFMS19]:

Theorem 4.2. The non-optimized version of MEDS is EUF-CMA-secure in the quantum ran-
dom oracle model, if in addition to the conditions from Theorem 4.1, assumption Aut holds.

We omit a detailed proof, but we note that all of the required properties from [DFMS19]
are satisfied by the construction of MEDS. It is only the property of a trivial automorphism
group that is required to show that the scheme satisfies the perfect unique response property.

The previous theorems describe the security of the non-optimized version of MEDS. We do
however apply several optimizations in order to improve performance and reduce signature size.
We discuss separately the implication of these on the security of MEDS.

• Multiple Public Keys + Fixed-Weight Challenge Strings. The two optimizations
are a common strategy for reducing signature sizes, and have been used in several other
signature schemes [Beu19, Ran20, BBPS21]. For example, LESS [BBPS21] applies exactly
the same optimizations and it was shown that they do not change the security claims of
the scheme. Since LESS is also based on code-equivalence, but in the Hamming metric,
the proofs given in [BBPS21] apply also to MEDS, with appropriate natural changes. We
refer the reader to [BBPS21] for details.

• Seed tree. A comprehensive description for seed trees can be found in [BKP20a] and a
ROM proof in [BKP20b, Sec. 2.7]. The adaption of the proof to the QROM setting is to
the best of our knowledge still open work. The proof for the seed tree in [BKP20b] re-
quires a salt and domain separation using node addresses to ward of multi-target collision
attacks. Both of these are implemented in MEDS.

• Public Key Compression. When applying this technique, since all the matrices are
chosen uniformly at random, the procedure is equivalent to first choosing two secret
codewords P

(0)
0 ,P

(0)
1 from C0 and a secret map (Ai,Bi) and finding the public codewords

P
(i)
0 ,P

(i)
1 from Ci, which in turn is equivalent to the procedure in the non-optimized version

of MEDS.

To reduce the computational effort, we further take P
(i)
0 and P

(i)
1 to be of specific form

(the identity matrix, and the identity shifted by one position to the right, respectively),
and the same for all i ∈ {0, 1, . . . , s− 1}. The question is whether having a specific form
of these public matrices makes the MCE problem easier to solve. This is however not the
case, as we see from the following argument.

Suppose there exists an adversary A with non-negligible advantage against MCE with
specified P

(i)
0 and P

(i)
1 . Then, an adversary B given an MCE instance MCE(C0, C1) can

first use the above procedure to construct C2 = ϕ1(C0) where C2 has specified codewords

P
(i)
0 and P

(i)
1 . Now, B gives the instance MCE(C1, C2) to A who outputs the isometry ϕ2

between the two codes with non-negligible advantage. B can now use the isometries ϕ1

and ϕ2 to easily find the isometry ϕ = ϕ1 ◦ ϕ−1
2 between C0 and C1 with essentially the

same advantage as A.

4.3 Known Attacks

The known attacks against MEDS are basically attacks against the underlying hard problem
MCE since the construction of the signature scheme from MCE is provably secure. There are
three main types of attacks against MCE:
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1. Algebraic attacks

2. Leon-like algorithms adapted to the rank metric

3. Graph-theoretic algorithms for solving polynomial equivalence problems

The state-of-the-art of these attacks is developed and detailed in [CDG20, RST22, CNP+23].
Some similar ideas were developed in the cryptanalysis of ATFE [TDJ+22, Beu22]. We provide
here a summary of the known cryptanalytical results, but we also further improve the algebraic
approach and the Leon-like algorithm from [CNP+23]. At the end, we discuss the applicability
of the ideas of Beullens [Beu22] in the context of MCE.

4.3.1 Algebraic Attacks

The algebraic attack presented here is an extension of the improved modeling from [CNP+23,
§6.2]. Consider the trilinear map C : Fn

q×Fm
q ×Fk

q → Fq corresponding to a matrix code in terms

of its basis given by C(x, y, z) =
∑

i,j,k C
(k)
ij xiyjzk. The MCE problem can then be rephrased as

the 3-TI problem of finding A ∈ GLn(q), B ∈ GLm(q) and T ∈ GLk(q) such that

C(Ax, By, Tz) = D(x, y, z) .

We will consider the following system of equations;

C(Ax, By, z) = D(x, y, T−1z) (2a)

C(Ax, y, Tz) = D(x, B−1y, z) (2b)

C(x, By, Tz) = D(A−1x, y, z) . (2c)

The modeling [CNP+23, §6.2] allows us to remove the inverse matrix T−1 from the equa-
tions (2a). This results in a bilinear system of k(nm− k) equations in the n2 variables aij and
m2 variables bij. In this modeling we do the same but then for all equations (2a), (2b), and (2c).

Let us revisit how to eliminate the inverse matrices. Consider matrices ω ∈ Fn×m
q with de-

composition ω =
∑

α v
T
αwα such that

∑
αD(vα,wα, z) = 0 for all z ∈ Fk

q . Note, by trilinearity
of D, that this property is independent of decomposition2. By the rank-nullity theorem these
matrices span a subspace of dimension at least nm − k and a basis {ωβ}β is easily computed.
Evaluate equation (2a) according to such ωβ =

∑
α v

T
β,αwβ,α and we get the following k(nm−k)

linear independent equations;∑
α

C(Avβ,α, Bwβ,α, z) = 0, ∀ β, z . (3)

In fact, there exists a basis {ωβ}β such that each ωβ has only k + 1 non-zero entries. When
using this basis each of the above equations has at most nm(k + 1) terms. The same trick
can be applied to (2b) and (2c) to obtain a tri-homogeneous system in the variable sets
({aij}i,j, {bij}i,j, {tij}i,j). The resulting system has k(nm − k), m(nk − m) and n(mk − n)
equations in tri-degrees (1, 1, 0), (1, 0, 1) and (0, 1, 1).

2In fact we can uniquely extend D to Fn×m
q × Fk

q → Fq and consider D(ω, z), in which case independence of
composition is clear.
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This system is not generic however, there are syzygies in tri-degree (1, 1, 1). Take linear
combinations of equations (3) multiplied by tij as follows:∑

j

tji
∑
α

C(Avβ,α, Bwβ,α, ej) =
∑
α

C(Avβ,α, Bwβ,α, Tei) = 0, ∀ i, β

This can be done for the other tri-degree types as well and all these equations are C ◦ (A,B,T)
evaluated on a 3-way array. However, there are only nmk three-way arrays of which nmk − 1
actually lie in the kernel of D. A rank-nullity argument then shows that there are at least
n(mk− n) +m(nk−m) + k(nm− k)− nmk + 1 syzygies in tri-degree (1, 1, 1). We conjecture
that the corresponding tri-Hilbert series of this system is given, up to tri-degree (n,m, k), by

H(r, s, t) = (1− rs)n(mk−n) · (1− st)m(nk−m) · (1− tr)k(nm−k) · (1− rts)−(2nmk−n2−m2−k2+1)

(1− r)n2 · (1− s)m2 · (1− t)k2
.

Here, the coefficient of rαsβtγ equals the right nullity of the Macaulay matrix of tri-degree
(α, β, γ) obtained from the system. Furthermore, the generating function for the number of
monomials in a certain tri-degree is given by:

M(r, s, t) =
1

(1− r)n2(1− s)m2(1− t)k2

Now using an algorithm such as block Wiedemann we get a complexity of

min
(α,β,γ)≺(n,m,k)

[rαsβtγ ]H≤1

3 · [rαsβtγ]M2 · nm(k + 1) .

To hybridize this approach, e.g. to parallelize or to Groverize, one can use the structure of
the equations as done previously in [CNP+23, §6.2]. Assuming that n = m = k one can fix 2
rows of A, so 2n variables (aij), to obtain a linear system for B. This results in a complexity of
O(q2nn6). Note that even though we have a larger system than before, the extra equations (2b)
and (2c) play no role here. If one manages to Groverize this, a complexity of O(qnn6) can be
obtained. Even though this is asymptotically better than the complexity of the full algebraic
attack, this performs worse for the proposed parameter sets due to the field size. Furthermore,
due to the sheer amount of variables, fixing fewer than 2n variables will not substantially
alter the used tri-degree and will hence not lead to improvements that are significant enough
to balance out the enumeration cost. We conclude that in this algebraic attack, a quantum
version will not outperform the classical attack.

4.3.2 Leon-like Algorithm

Leon’s algorithm [Leo82] is a well-known algorithm for solving code equivalence in the Hamming
metric, which works by finding low-weight codewords in both codes and “matching these up”
in the right way to recover the isometry. Analogues in the rank metric [CNP+23, §6.3] similarly
require finding low-rank codewords in both C and D, and finding collisions between these sets
of low-rank codewords. In [CNP+23], the authors propose to use a two-collision method and
they argue that in this case, both the birthday-based approach and the deterministic one have
the same complexity. Here, we extend the analysis of the two-collision approach and then
we propose an algorithm that requires only one collision and allows for an improved birthday
attack.

The Leon-like algorithm is comprised of two steps. First, we build two lists of codewords
of rank r in C and D respectively. Looking for low-rank codewords can be modeled as an
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instance of the MinRank [Cou01, FLP08] problem for k matrices of size m×n. We will denote
by MR(n,m,k,r) the cost of solving this MinRank instance using state-of-the-art algorithms such
as the Kipnis-Shamir modeling [KS99] or Bardet et al.’s modeling [BBC+20]. The expected
number of codewords of rank r when n = m = k (which is valid for all our parameter sets) can
be approximated by C(r) ≈ qr(2n−r)−n2+n, so the instance of MinRank that we are solving is
expected to have a solution space of dimension σ = r(2n− r)− n2 + n. Thus, in the algebraic
modeling of MinRank, we can assign up to σ variables and still expect to have a solution with
high probability. This results in an easier MinRank instance of cost MR(n,n,n−σ,r). In general, as
an estimate of the complexity of this step, we have MR(n,r) = min{MR(n,n,n,r), q

σ ·MR(n,n,n−σ,r)}.
The second step of the algorithm is the collision search in the lists. A collision (C1,D1)

produces linear relations of the form A−1D1 = C1B in the unknown coefficients of A−1 and
B, so having two collisions yields a system of 2n2 equations in 2n2 variables. However, since
C1, C2, D1 and D2 all have rank r, the number of linearly independent equations is at most
2n2 − 2(n − r)2. In the case where n = m = k, the target rank r can be approximated by
r = n −

√
n. Then, the number of expected linearly independent equations is approximately

2n2 − 2n. Using only these linear equations is not enough to solve the system efficiently, as we
would have to enumerate 2n variables. However, the hybrid approach hinted in [CNP+23] does
have a polynomial time complexity. Concretely, we can use the following linear equations

AC1 = D1B
−1

AC2 = D2B
−1

A−1D1 = C1B
A−1D2 = C2B

(4)

From the first two we derive a solution space for A of dimension 2n, and from the last two equa-
tions we obtain the same forB. Then, we use the algebraic minors-like modeling from [CNP+23]
to restrict the solution space further. Recall that in this modeling, we have n(n2−n) equations
that are bilinear in A and B. Substituting these by the bases of the solution spaces of A and B
to the linear equations in (4), we obtain a system of n(n2−n) bilinear equations in 4n variables.
The system is homogenous and (2n, 2n) bilinear, so it contains 4n2 degree-two monomials. It
can thus be linearized and solved efficiently through Gaussian elimination in (4n2)ω operations.
The overall complexity of the two-collision deterministic approach follows from the analysis
in [CNP+23] and, for a target rank r, it amounts to

O(max(MR(n,r), q
2σn2ω)).

In the one-collision approach, following a birthday argument, we build lists of size
√
C(r)

elements. Recall that for a collision (C1,D1) we have that AC1B = D1. Let v be a vector in
the kernel of D1. Then AC1Bv = 0, so Bv is in the kernel of C1. Since the kernels of C1 and
D1 are of dimension (n− r), this argument yields r(n− r) linear equations in the B variables.
Similarly, we have that u⊤A is in the left kernel of C1 for all vectors u in the left kernel of D1.
We obtain another r(n− r) linear equations in the A variables. Then, we can apply the same
hybrid approach as in the two-collision case and we can further use the improved modeling
from Section 4.3.1. The cost of solving this system, denoted by Csolve, follows directly from the
analysis in Section 4.3.1, with the exception that we have fewer variables because the collision
allows us to express A and B as spaces of dimension n2 − r(n − r). We need to solve this
system for each candidate collision, so the overall complexity for a target rank r is

O(max(q
σ
2MR(n,n,n−σ,r), q

σCsolve)).
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In the quantum setting, we can use Grover’s algorithm to speed up the creation of the lists
of low-rank codewords, as well as the collision search. Hence, the quantum complexity of the
attack is

O(max(q
σ
4MR(n,n,n−σ,r), q

σ
2Csolve)).

4.3.3 Graph-Theoretic Algorithm for Solving Polynomial Equivalence

This algorithm is an application of the graph-theoretic algorithms for solving the Quadratic
Maps Linear Equivalence (QMLE) [BFV13] on MCE. This is possible since MCE is polynomial-
time equivalent to the homogeneous version of QMLE [RST22]. Specifically, two matrix codes
C and D from an MCE instance correspond to two quadratic maps F and P composed of k
multivariate polynomials in m+n variables. The state-of-the-art algorithm is a collision-search
algorithm in two steps: First, create lists LF and LP of elements in Fn+m

q that satisfy a certain
property P with regards to F and P . Then, find a collision between these LF and LP that
reduces to a much simpler equivalence problem that we can solve in polynomial time. The
distinguishing property P can be any invariant of quadratic maps. Specifically, in [RST22] the
authors propose to use the dimension of the kernel of the differential3 associated to F resp. P
for the case where m+n ⩽ k ⩽ 2(m+n), and the zeros of F resp. P for the case n ⩽ k ⩽ m+n.
The concrete complexity of the algorithm follows a birthday argument and is the maximum
of the complexity of the two steps described above. Using the dimension of the kernel of the
differential as a distinguishing property, the complexity of the attack is

O(max((qm+n/d)
1
2 , qm+nd)), (5)

up to some polynomial (for most parameter ranges) factors, and with success probability of
≈ 63%. Here, d is the proportion of elements satisfying P and can be calculated as d =
1/O(qκ2+κ(k−(m+n))), where κ is an integer chosen such that it minimizes equation (5). This
attack does not perform well for our parameter sets, because in the case of n = m = k, it is
better to look for collisions between codewords instead of transforming the codes into quadratic
maps. This is done in the Leon-like algorithm described in Section 4.3.2, with some additional
improvements.

In the quantum setting, Grover’s algorithm can be used to speed up both steps of the attack.
In the first step, we can use Grover’s algorithm for generating the lists LF and LP , and in the
second step, we can use it for the collision search. Factoring in this speed-up gives us the
following complexity

O(max((qm+n/d)
1
4 , (qm+nd)

1
2 )).

4.3.4 On the Applicability of an Attack Against ATFE

Since MCE is known to be equivalent to the alternating trilinear form equivalence (ATFE)
problem [GQT22, TDJ+22], it is crucial to explore whether attack techniques that have been
developed for ATFE apply to MCE. Specifically, we analysed the ideas from Beullens’ at-
tack [Beu22] on ATFE and their impact in the MCE setting. This is a collision-search attack
that uses the graph of alternating trilinear forms ϕ(x,y, z). A vertex in the graph is an element
from a projective space over Fn

q , of all elements v ∈ Fn
q up to a scalar α ∈ Fq. Let us denote

by ϕu,v the linear form obtained by fixing two arguments of a trilinear form ϕ to (u,v). Then,
there is an edge (u,v) in the graph if u ̸= v (u,v) and ϕu,v = 0. The rank of a vector u ∈ Fn

q

3This was also the choice in the original proposal [BFV13].
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(with respect to ϕ) is defined as the number of vectors v ∈ Fn
q such that ϕu,v = 0. Note that

this is equivalent to the degree of a vertex u. The graph defined this way is an invariant of
trilinear forms and so, it can be used as a tool in a collision-search algorithm. The main idea of
the algorithm is to look for collisions between low-rank elements. Finding low-rank elements is
modeled as a MinRank problem and solved using state-of-the-art MinRank solving techniques.

If a matrix code is viewed as a (non-alternating) trilinear form, then the graph-theoretic
approach described above corresponds to finding a collision between low-rank codewords. It is
thus very similar to the Leon-like algorithm described in Section 4.3.2. However, the graph-
theoretic approach from [Beu22] allows for a graph walking improvement that significantly
reduces the complexity of the attack in the ATFE setting. When one low-rank element u is
found, we continue looking for other low-rank elements in the neighbourhood of u. This yields
a smaller MinRank instance, because the neighbours of an element of rank r form a space of
dimension n − r, so the corresponding MinRank is an instance of only n − r matrices and a
target rank r.

We applied this technique in the MCE setting, but no significant improvement was found,
especially not when compared to the similar technique from Section 4.3.2. This is mainly
because trilinear forms obtained from matrix codes are less structured than alternating trilinear
forms. For instance, when an ATFE is transformed into a matrix code, all codewords are
represented by anti-symmetric matrices, and consequently, they are all of even rank. Our
theoretical analysis, as well as our experimental findings, show that there is no advantage in
looking for low-rank codewords in the neighbourhood of a low-rank codeword instead of in the
entire graph. For our parameter sets and the optimal target rank in the Leon-like algorithm,
the probability that a low-rank codeword has low-rank neighbours is so small that we can not
take advantage of graph walking to reduce the complexity of the attack.

5 Instantiation and Implementation

5.1 Parameter Sets (2.B.1 cont.)

The MEDS protocol has a flexible structure that accommodates a diverse range of parameter
choices, allowing users to tailor the scheme to suit specific applications. The field size q, as well
as the matrix code dimensions n, m, and k, are the main security parameters for the underlying
matrix code equivalence problem, while the parameters s, t, and w control the security of the
Fiat-Shamir construction.

All q, n, m, and k have a direct impact on the sizes of keys and signatures. The cost of some
attacks (as discussed in Section 4) is defined by the minimum of n, m, and k; therefore, we are
using n = m = k in all proposed parameter sets. However, variances in the concrete attack
cost provide some trade-offs between the selection of q and n = m = k; we are choosing these
parameters such that we get the smallest key and signature sizes for a given security level.

There is also a trade-off between s, t, and w. The parameter s has a direct linear impact
on public key size and key generation time, but a larger s allows us to chose smaller t and w.
Parameter t has a linear effect on signing and verification time and w has a quasi-linear effect
on the signature size.

For this submission, we decided to propose ’balanced’ parameter sets where public key size
and signature size are similar. We hence pick s such that a moderate signing and verification
time can be achieved and then chose t and w such that the signature size is similar to the public
key size and such that signing and verification time indeed are moderate.
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Parameter Set q n m k s t w
pk

(byte)

sig
(byte)

FS

NIST Security Level I

MEDS-9923 4 093 14 14 14 4 1 152 14 9 923 9 896 −128.11
MEDS-13220 4 093 14 14 14 5 192 20 13 220 12 976 −129.14

NIST Security Level III

MEDS-41711 4 093 22 22 22 4 608 26 41 711 41 080 −192.49
MEDS-69497 4 093 22 22 22 5 160 36 55 604 54 736 −191.34

NIST Security Level V

MEDS-134180 2 039 30 30 30 5 192 52 134 180 132 528 −261.84
MEDS-167717 2 039 30 30 30 6 112 66 167 717 165 464 −258.95

Table 2: MEDS parameter sets. (FS denotes the security of the Fiat-Shamir construction.)

Algebraic Leon-like
Parameter Set q n m k Classical Classical Quantum

NIST Security Level I

MEDS-9923
4093 14 14 14 148.10 170.68 146.68

MEDS-13220

NIST Security Level III

MEDS-41711
4093 22 22 22 218.41 246.95 216.95

MEDS-69497

NIST Security Level V

MEDS-134180
2039 30 30 30 298.82 297.77 275.78

MEDS-167717

Table 3: Cost of the best known attacks for all parameter sets in log scale. The algebraic attack
does not benefit from Grover’s algorithm for these parameter sizes, so the complexity is the same in
the classical and quantum setting.

Table 2 shows the resulting parameter sets for NIST security Levels I, III, and V. For each
security level, we propose two parameter sets, a small one with small public key and signature
sizes and a fast one with smaller t and hence faster signing and verification times. Different
parameter sets for different trade-offs can be specified as described above.

The cost of the two best known attacks for our parameter sets, the algebraic attack described
in Section 4.3.1 and the Leon-like attack from Section 4.3.2, is shown in Table 3.

The byte length of seeds and resulting key and signature sizes as well as the instantiations
of XOF, H, and G are shown in Table 4.

5.2 Implementation Notes

Constant time implementations are considered the base-line for the secure implementa-
tion of cryptographic schemes. Besides a constant-time implementation of the basic finite field
operations in Fq (addition, multiplication, modulo-q computation, inversion), the most crucial
operations in MEDS are matrix multiplication, and a matrix systemizer for the computation
of a systematic form. Matrix inversion can easily be implemented using the systemizer.
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Security Level

Level I Level III Level V

ℓtree seed (byte) 16 24 32
ℓsec seed (byte) 32 32 32
ℓpub seed (byte) 32 32 32
ℓsalt (byte) 32 32 32
ℓdigest (byte) 32 32 32

ℓFm×m
q

(byte) ⌈m2 · log2(q)/8⌉
ℓFn×n

q
(byte) ⌈n2 · log2(q)/8⌉

ℓGi
(byte) ⌈((k − 2)(mn− k) + n)⌈log2(q)⌉)/8⌉

ℓsk (byte) (s− 1)(ℓFm×m
q

+ ℓFn×n
q

) + ℓsec seed + ℓpub seed

ℓpk (byte) (s− 1)ℓGi
+ ℓpub seed

ℓpath (byte) (2⌈log2(w)⌉ + w(⌈log2(t)⌉ − ⌈log2(w)⌉ − 1)) · ℓtree seed

ℓsig (byte) ℓdigest + w(ℓFm×m
q

+ ℓFn×n
q

) + ℓpath + ℓsalt

XOF SHAKE256
H SHAKE256
G SHAKE256

Table 4: Choice of functions and parameters.

In the reference implementation, we simply use schoolbook multiplication for the implemen-
tation of matrix multiplication, which does not have any data-dependent branches or address
calculations. However, if other algorithms are used for the optimization of matrix multiplica-
tion, constant-time aspects need to be considered.

Our reference implementation is using a constant-time version of Gaussian elimination for
computing the systematic form of a matrix (respective for matrix inversion), which results
in a slightly higher computational cost than a straight-forward implementation of Gaussian
elimination. The requirement of the systematic form for the pivot elements to be in the (left)
diagonal, however, simplifies the constant-time implementation and reduces its cost compared
to a general constant-time Gaussian elimination implementation.

System solving is a crucial operation in the key generation of MEDS. To implement the
function Solve, we need to solve a linear system derived from:

P0B
−1 = AP

(0)
0 (6a)

P1B
−1 = AP

(0)
1 (6b)

with P0 = Im and P1 = Um for A ∈ Fm×m
q and B−1 ∈ Fn×n

q in n2 + m2 − 1 variables
and 2mn − 1 equations, which in a straight-forward implementation can lead to a significant
computational cost for key generation in particular for larger parameter sets. However, due to
the sparse structure of P0 and P1, the resulting system is sparse and highly structured. The
cost of solving the system hence can be reduced to that of solving a Fn×(2m+2)

q system derived
from (6a) and (6b) plus back-substitution for all n2 + m2 − 1 variables. See the reference
implementation for further details. For n = m as in our parameter sets, the resulting cost is in
the order of computing the inverse of a Fn×n

q matrix. We are using our constant-time Gaussian
elimination implementation to solve the derived smaller system in the reference implementation.

22



Parameter Set
Key Gen. Signing Verification pk sk sig

(ms) (mcyc.) (ms) (mcyc.) (ms) (mcyc.) (byte) (byte) (byte)

NIST Security Level I

MEDS-9923 1.00 1.90 272.66 518.05 271.36 515.58 9 923 1 828 9 896
MEDS-13220 1.32 2.51 46.79 88.90 46.04 87.48 13 220 2 416 12 976

NIST Security Level III

MEDS-41711 5.16 9.80 772.10 1 467.00 769.46 1 461.97 41 711 4 420 41 080
MEDS-55604 6.75 12.82 203.83 387.27 200.37 380.70 55 604 5 872 54 736

NIST Security Level V

MEDS-134180 23.55 44.75 857.81 1 629.84 848.72 1 612.57 134 180 9 968 132 528
MEDS-167717 29.39 55.83 506.21 961.80 494.15 938.89 167 717 12 444 165 464

Table 5: Performance of the reference implementation of MEDS.

Note: Since we use only the first 2mn − 1 equations of the 2mn equations provided by (6a)
and (6b) by dropping one equation from (6b), the complete relation in (6b) does not hold
and the rows in the public key matrices Gi corresponding to P1 actually have non-zero entries
corresponding to the last row of P1. See Algorithm 3 on the storage of these entries.

5.3 Performance (2.B.2)

Table 5 shows the performance and data sizes of the reference implementation in time (ms)
and megacycles (mcyc.) at 1 900MHz on an AMD Ryzen 7 PRO 5850U CPU with 32GB RAM
running under Ubuntu 22.04.1 Linux following the SUPERCOP setup4 computed as median of
128 randomly seeded runs each.

The reference implementation of MEDS is also the optimized implementation since there
is no particular advantage from using a 64-bit architecture for MEDS. However, due to the
highly parallel nature of signing and verification (all t iterations can be computed in parallel),
we expect a significant performance improvement from a parallel SIMD implementation.

The most recent version of the reference implementation is available on GitHub:

https://github.com/MEDSpqc/meds

6 Known Answer Tests (2.B.3)

We provide Known Answer Tests at the URL:

https://www.meds-pqc.org/KAT/MEDS-KAT-2023-05-31.tgz

7 Advantages and Limitations (2.B.6)

7.1 Advantages

Simplicity. Assuming the hardness of the MCE problem, MEDS is based on a well-known
Fiat-Shamir construction. Overall, the scheme is very simple, given the building blocks of
matrix arithmetic and matrix systemization. The most complex operation is the construction
of the seed tree, for which several efficient and straightforward approaches exist.

4https://bench.cr.yp.to/supercop.html
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Flexibility. With q and n = m = k as well as s, t, and w, we have several parameters
to control public key and signature sizes as well as computational cost within given security
requirements. This enables us to optimize parameter sets for a given security level for small
signatures, small public keys, or — as presented in our parameter set proposal — balanced
public key and signature sizes at moderate computational cost.

7.2 Limitations

Large Data Size and Scalability. Despite the flexibility in the parameter selection, the
resulting public keys and signatures are relatively large. This is even more significant when
scaling up the parameters to higher parameter sets. However, Section 8 describes preliminary
work that would allow us to significantly reduce signature sizes. We are currently evaluating
this approach in regard to security, computational efficiency, and key- vs. signature-size trade-
offs (e.g., using a smaller s), and we are considering incorporating such an approach into our
proposal in the future, if the security analysis and the time-memory trade-offs turns out to be
favorable. This approach then would also improve the scalability to higher parameter sets.

8 Considerations for Reducing the Signature Size

This section explains an idea that can be used to reduce the signature size by a large factor.
The idea makes use of the technique that we use to reduce the public key size. The proposed
parameter sets do not make use of the idea, but we might want to apply it for the second round.
For simplicity, below we explain the idea for s = 2, although it is easy to see that the idea also
works for any s > 2.

Let the public key be (G0,G1) such that

G0 = SF(πA−1
1 ,B−1

1
(G1)) = T−1

1 · πA−1
1 ,B−1

1
(G1) = πA−1

1 ,B−1
1
(T−1

1 ·G1).

To compute G̃j’s, the signer first generates a seed σr and expand it into full-rank matrices
R0, . . . ,Rt−1 ∈ F2×mn

q . Then, for j ∈ {0, . . . , t− 1}, the following steps are carried out.

• Generate a seed σj and expand it into a full-rank matrix Mj ∈ F2×k
q .

• From Mj ·G0 ∈ F2×mn
q and Rj, derive Ãj, B̃j such that πÃj ,B̃j

(Mj ·G0) = Rj.

• Compute G̃j = SF(πÃj ,B̃j
(G0)) = SF(πÃj ·A−1,B−1·B̃j

(G1)).

A signature will then include

• the seed σr,

• σj’s for all j with hj = 0,

• Mj ·T−1
1 ∈ F2×k

q for all j with hj = 1, and

• the digest d, which is obtained by hashing G̃j’s and the message.

From σr and σj, the verifier can derive (Ãj, B̃j) and thus G̃j for all j with hj = 0. What is

less obvious is that from σr and Mj ·T−1
1 , the verifier can also derive G̃j for all j with hj = 1.

To see this, note that

πÃj ,B̃j
(Mj ·G0) = πÃj ·A−1,B−1·B̃j

(Mj ·T−1
1 ·G1) = Rj.
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Therefore, from Mj ·T−1
1 ·G1 and Rj, the verifier can derive Ãj ·A−1,B−1 · B̃j and thus G̃j

for all j with hj = 1.
When the idea is applied directly using the parameters for MEDS-13220, the signature size

can be reduced from 12 916 bytes to only

32 + 16 · (t− w) + ⌈2 · k · ⌈log2(q)⌉/8⌉ · w + 32 = 3 656

bytes. By replacing σj’s by necessary seeds p in a hash tree and the corresponding salt α, the
signature size can be further reduced to 2 088 bytes.
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